
CONSUS is funded under the SFI Strategic Partnerships Programme (16/SPP/3296) and is co-funded by Origin Enterprises Plc

MAMS: Multi-Agent Microservices
Rem Collier, Eoin O’Neill, David Lillis, Gregory O’Hare

School of Computer Science

The Bigger Picture

• We want to build applications that seamlessly combine RESTful
microservices and Multi-Agent Systems.

• There should be no delineation between agent and service frameworks.
• We require that services be able to interact directly with agents and agents

to interact directly with services.

A

A
A

S

S

S

S
S

S

S

S

AP
I G

at
ew

ay

A

MAMS = Multi-Agent Systems + Microservices

• Multi-Agent Systems:
• Established (since 1980s) research area that views systems as consisting of

one or more loosely-coupled entities that have private (isolated) state and
which work together to solve problems that are beyond their individual
capabilities.

• Key concepts include: autonomy, reactivity, proactivity, social ability

• Microservices:
• Established (since 2011) as a key architectural style for modern software

systems. Adhere to the IDEAL principles: Isolated state, Distribution,
Elasticity, Automated management, and Loose coupling.

• Both approaches are concerned with the creation of loosely-
coupled distributed systems comprised of small independent
(autonomous) components with internal state.

Microservices in 1 slide

• Microservices often adopt a resource-oriented view of systems:
• A system consists of a set of resources and (composite) resource types.
• Representations of resource state in tandem with CRUD-style operations

can be used drive system behaviour.
• In the spirit of the Web, relations between resources are modelled as links.
• URIs are used to identify (parts of) resources.

• Microservices co-locate resources for practicality:
• Instances of the same resource types (e.g. records held within a database)
• Highly coupled / composite resources (e.g. blog entries and user

comments).

• Microservices can be passive or active:
• Changes of state are not only driven by interaction, but also by

internal/hidden (to the resource) processes.

Agents as Microservices

• Agents are complex resources:
• Agents have complex (composite) state – beliefs, desires, intentions, rules,

messages, …
• Not all states are/should be externally mutable.
• Agents normally interact by sending messages to one another (via their

inbox resource).

• Agents should have unique identifiers:
• e.g. FIPA Agent Identifiers

• Agents must deal with Chattiness/Bounded Context:
• Coordination / collaboration often results in increased interaction between

agents.
• Organisationally speaking, we expect more interaction within an

organisation than between organisations.

Agents as Microservices

• Adopting a view of agents as resources offers a simple model for
exposing agent state.

Agent:
rem

http://localhost:1234/rem

Beliefs http://localhost:1234/rem/beliefs

Goals http://localhost:1234/rem/goals

Intentions http://localhost:1234/rem/intentions

Inbox http://localhost:1234/rem/inbox

Public/Private Agents

• Internal agents can augment interface agent functionality.

IntA1

IntA2

Imp
A1

Imp
A2

Imp
A5

Imp
A4 IntA3

Imp
A3

Service

Agent-Service Interaction

• What about Plain Old MicroServices (POMS)?
• POMS interact through REST – simple and effective

• Agent-POMS interaction needs to be as simple!
• Beliefs are internal representations of concepts that the agent uses to

reason about how best to act.
• E.g. how to bid for a given type of item

• Interacting with agents through messaging or state update requires in depth
technical knowledge.

• Another approach is required…

Agents & Virtual Resources

• Idea: Agents are able to manage internal resources that are
externally accessible through REST.

• Agents expose concepts (e.g. bidding strategies) as resources
• Internal representations of the resources are implementation specific.
• For example, bidding strategies may be modelled as a set of beliefs

• best-price(Item, Amt), required(Item, Qty), increment(Item, Inc)
• strategy(Item, Amt, Qty, Inc)

• Agents should be aware of incoming requests and be able to decide on how
to respond (based on the request and the current context).

Agent:
manager

http://localhost:1234/manager

Items http://localhost:1234/manager/items

Clients http://localhost:1234/manager/clients

ASTRA: AgentSpeak(TR)

• Variant of AgentSpeak(L) that includes support for Teleo-Reactive
Programming.

• Event : Context -> Plan rules
• State -> Action rules

• Strongly Typed
• closely aligned to Java type system
• Includes object references

• Extension/Reuse mechanisms
• Modules: Sensors, Actions, Terms, Formulae, Events
• Multiple Inheritance: Agent Classes

• Minimal Run-time
• Configurable directly by agents.
• System started by running an agent.

ASTRA & MAMS

• Integration of a web interface based on Netty.io
• A Http module that links agent to the web interface (creates URI) and

provides custom actions, events, and terms.

agent Hello {

module Http http;

rule +!main(list args) { http.register(); }

rule $http.get(ChannelHandlerContext ctx,FullHttpRequest req,["hello"]) {

ResponseObject obj = http.createResponse();

http.setStatus(obj, 200);

http.setType(obj,"text/html");

http.setContent(obj, "<html><body>Hello World!</body></html>);

http.sendResponse(ctx, req, obj);

}

}

Example: Vickrey Auction

Manager

/items /clients

Bidder(s)

2
Creates
Bidder(s)

/wanted

5 Intereste
d
"apples"

Auctioneer
(2 apples)

MicroService1

1 POST /clients

3 Link to <bidder-name>/wanted

4
POST /wanted
{2 apples / 1 euro each}

MicroService2

A POST /items
{2 apples}

C Alerts
Bidders

D Notify
Interest

E Vickrey
Auction

F Return
Result

MAMS Vickrey Auction Service

Example: Vickrey Auction

agent Manager {

...

rule $http.post(ChannelHandlerContext ctx, FullHttpRequest req, ["items"], string bdy) {

Item item = il.itemFromJson(bdy); il.storeItem(item, string id);

!!auctionItem(id, il.getItemName(item));

ResponseObject obj = http.createResponse();

http.setStatus(obj, 200);

http.setLocation(obj, http.myAddress()+"/items/"+id);

http.sendResponse(ctx, req, obj);

}

synchronized rule +!auctionItem(string id, string item) {

!auctioneer("auctioneer"+id, item);

foreach (interest(string name, item)) {

send(inform, name, available(item, "auctioneer"+id));

}

}

...

}

Conclusions

• MAMS offers a simple model for defining open decentralised multi-
agent systems.

• URIs provide a global naming system for agents and a way of exposing the
state of an agent.

• Feels like something akin to defining a “body” (modelled as observable
state) for agents…

• Enables further concepts: Joint Intentions, Conversation Modelling,
Conversation Histories, Acquaintance Networks, …

• MAMS promotes the creation and use of pre-built components
that can be tested in isolation and used in confidence

• Seamless interaction between agents and services facilitated through the
concept of virtual resources.

• Public/Private agents allows the creation of robust services with clearly
defined interfaces.

• Leads to concepts such as Organisation as a Service (OaaS)

Conclusions

• From a Linked-Data / Semantic Web perspective:
• Agent-Agent interaction can enhanced through semantic models.
• Agent-Service interaction can also benefit.
• Need to move from a model of implementing internal models of the

environment to embracing shared models.

• Need to design a class of agent programming languages that fully
embrace linked data / semantic web / REST concepts.

