| EVELS OF ABSTRACTIONS
IN DESIGNING & PROGRAMMING

SYSTEMS OF COGNITIVE AGENTS

A. Ricci
DISI, University of Bologna

OBJECTIVE

OBJECTIVE

e Some glances about Agent-Oriented Programming and Multi-
Agent Oriented Programming

- examples using JaCaMo framework/technology

OBJECTIVE

e Some glances about Agent-Oriented Programming and Multi-
Agent Oriented Programming

- examples using JaCaMo framework/technology
 Main viewpoint
- Level of abstraction, from design to runtime through
programming

OBJECTIVE

e Some glances about Agent-Oriented Programming and Multi-
Agent Oriented Programming

- examples using JaCaMo framework/technology
 Main viewpoint
- Level of abstraction, from design to runtime through
programming
e Some points for the discussion
AOP and (M)AQOP for the web/hypermedia?

AGENT-ORIENTED PROGRAMMING

e Al view

- modeling/designing/programming autonomous systems,
referred as agents

e SE view

- USIng agents as first-class modeling/designing/programming
abstraction

AGENT ABSTRACTION

AGENT ABSTRACTION

SEeNsors

A
e
802
c© PERCEPTION
\
DECISION
ACTION

effectors / actuators

AGENT ABSTRACTION

SEeNsors

effectors / actuators

PERCEPTION

DECISION

ACTION

e task/goal-oriented
e pro-active + reactive
e decision making

PARADIGMS & METAPHORS

mperative => Machines
functional => math

OOP => world of objects
agents =>

PARADIGMS & METAPHORS

mperative => Machines
functional => math

OOP => world of objects
agents => world of humans

ACTIONS & PERCEPTS

/ ENVIRONMENT \
CTIONS

P

> OBSERVABLE STATE

ACTIONS & PERCEPTS

ENVIRONMENT e control uncoupling
- action execution model Is

ACTIONS asynchronous
[
. > OBSERVABLE STATE » success/failure events
P
AGENT ’ - percepts as obs state events
4_ __________________
4_ __________________
4_ __________________

PERCEPTS

AGENT

ACTIONS & PERCEPTS

/ ENVIRONMENT

ACTIONS

o >

o > OBSERVABLE STATE
o >

PERCEPTS \\

~

%

e control uncoupling

- action execution model Is
asynchronous

» success/failure events
- percepts as obs state events
e VvS. other models
- vS. method/proc calls

- VS. async msg (actor)
passing

AGENT COMMUNICATION

AGENTS
SPEEC

* A

ACTS -
Voo

AGENT COMMUNICATION

AGENTS . .
* Agent Communication

L anguages
- "speech acts”
- ~asynchronous message

SPEECH | | passing + action

ARTS semantics

(&

AGENT COMMUNICATION

AGENTS . .
* Agent Communication

L anguages
- "speech acts”
- ~asynchronous message

SPEECH | | passing + action

ARTS semantics

e VvS. other model
- VS. async (actor) msg
passIing

"COGNITIVE™ MODEL

"COGNITIVE™ MODEL

 AOP as a computing paradigm
- mentalistic and societal view of computation [Soham, 1993]
- level of abstraction to design and program

"COGNITIVE™ MODEL

 AOP as a computing paradigm
- mentalistic and societal view of computation [Soham, 1993]
- level of abstraction to design and program
« BDI (Belief-Desire-Intention) model/architecture (80ies)
- Inspired by the theory of human practical reasoning [Bratman, 1987]
- Procedural Reasoning System (PRS) [Georgeff et al, 1988]

"COGNITIVE™ MODEL

o Beliefs
- Information state
o (Goals
- tasks to do i > e | (e
- achieve | maintenance
e Plans
- how to achieve the goals
- modules of agent behaviour

__ >
Beliefs

>

Plan
Library

3

Intentions

\ _‘/

“COGNITIVE” MODEL

Beliefs
- Information state
o (Goals
- tasks to do
- achieve | maintenance
e Plans
- how to achieve the goals
- modules of agent behaviour

BELIEF BASE

my_name(“ag0”)

temp(15) <]

-—
p—
-
-—

)

AGENT

state(idle) «-4{-------

-
-
-—
-
-
-
-
-—
-—
-
-

startCooling

startWarming
® >

@ !

temp

-
p—a
-
—

15°

~

state

idle

stop
[> E

HVAC
NVIRONMEN

)

"COGNITIVE™ MODEL

e Beliefs
- Information state // examples 1in Jason
Goals lachieve_temp(20).
- tasks to do |
| | /* more declarative style */
- achieve | maintenance I temp(20) .
e Plans
| /* long-term task */
- how to achieve the goals lachieve_and_keep_temp(20).
- modules of agent behaviour

"COGNITIVE™ MODEL

» Beliefs
- Information state
o (Goals
- whattasks to do
- achieve | maintenance
- Plans
- how to achieve the goals
- modules of agent behaviour

PLAN LIBRARY

@myplanX

)

AGENT

PLAN MODEL | JASON EXAMPLE

- Plan model
- pro-active plans
- reactive plans

* Hierarchical model
- Sub-goals

<event> : <context>
<- <body>.

PLAN MODEL | JASON EXAMPLE

+!lachieve_temp(Target) :
temp(Current) & Target > Current
<- startWarming;

e Plan model lwarm_until(Target).
- pro-active plans

+!lachieve_temp(Target) :

- reactive p\ans temp(Current) & Target < Current
| _ <- startCooling;
 Hierarchical model lcool_until(Target).
- Sub-goals

+!lachieve_temp(Target) :
temp(Current) & Target == Current
<- stopHVAC.

PLAN MODEL | JASON EXAMPLE

 Plan model
- pro-active plans
- reactive plans
 Hierarchical model
- Sub-goals

+temp(Current)
target(Target) & Target !'= Current
<- lachieve_temp(Target).

PLAN MODEL | JASON EXAMPLE

+!lachieve_temp(Target) :
temp(Current) & Target < Current
<- startWarming;

e Plan model lwarm_until(Target).
- pro-active plans

+!lachieve_temp(Target) :

- reactive p\ans temp(Current) & Target > Current
]] <- startCool1ing;

Hierarchical model lcool_until(Target).

- Sub-goals

+!lachieve_temp(Target) :
temp(Current) & Target == Current
<- stopHVAC.

"COGNITIVE™ MODEL

+!lachieve_temp(Target) :

Intention temp(Current) & Target < Current
, | <- startWarming;
- a plan in execution lwarm_until(Target).
» can fail => plan tailure handling _lachieve_temp(Target) :
» can be inspected, suspended, <- print(“broken”);

send_email.

resumed, aborted
+!warm_until(Target) :

- multiple intentions can be In temp(Current) & Current > Target

execution concu rrently <- .drop_intention(warm_until);
lachieve_temp(Target).

"COGNITIVE™ MODEL

. +1gl <-
Reflection/meta-level features

» adding/changing plans at runtime
» Inspecting/changing motivation
state +!1gl : .1intend(g2)

, <= ..
.suspend_intention(g2);

.add_plLan(“+b : true <- .print(b).”);

CONTROL LOOP | REASONING CYCLE

CONTROL LOOP | REASONING CYCLE

* Abstract/general

ttttt

CONTROL LOOP | REASONING CYCLE

* Abstract/general

AGENT

» (BDI) Reasoning cycle

1 begin
while true do

2
3
4
5
6
4
8

end

p <— perception()

B <+ brf(B,p) ; // belief revision
D < options(B, 1) ; // desire revision
| < filter(B,D, 1) ; // deliberation
execute(l) ; // means-end

CONTROL LOOP | REASONING CYCLE

* Abstract/general * (BDI) Reasoning cycle

AGENT while true do

B < brf(B, perception()) PLANS and PLAN LIBRARY
D « options(B, /) means-end in BDI =>
|« filter(B, D, 1) get and exec a plan

™ < plan(B, 1, A) from a plan library
while 7 # () and —succeeded(/, B) and

execute(head(m))
T <— tail ()
B < brf (B, perception())

| See action

next > siate

<«
J J
© 0 ~N O U A W N K

revise commitment to plan — re-

0 it reconsider(/, B) then planning for context adaptation
11 D < options(B, 1) ;

ENVIRONMENT ‘— 12 | < filter(B, D, 1) ;
13 if_ﬁsound(w, /, B) then reconsider the intentions

=t
S

—— | < plan(B, 1, A)

AGENTS vs. OBJECTS/ACTORS

AGENTS vs. OBJECTS/ACTORS

e vS. objects in OOP
- active vs. passive
- stronger encapsulation

» state + behaviour + control of the behaviour
» “decision making”

AGENTS vs. OBJECTS/ACTORS

e vS. objects in OOP
- active vs. passive
- stronger encapsulation
» state + behaviour + control of the behaviour
» “decision making”
e VS. actors
- not reactive but pro-activity
» reasoning cycle vs. event-loop
» task/goal-oriented vs. message-driven

FROM AOP TO MAOP
(“MULTI-AGENT ORIENTED PROGRAMMING”)

FROM AOP TO MAOP
(“MULTI-AGENT ORIENTED PROGRAMMING”)

* Integrating further design & programming dimensions and
abstractions aside to agent [Boissier et al, JaCaMo papers]

- environment dimension
- organisation dimension

FROM AOP TO MAOP
(“MULTI-AGENT ORIENTED PROGRAMMING”)

* Integrating further design & programming dimensions and
abstractions aside to agent [Boissier et al, JaCaMo papers]

- environment dimension
- organisation dimension
e Key points
- separation of concerns
- again: level of the abstraction
» |.e. away from the everything-is-an-agent perspective

ENVIRONMENT
AS FIRST-CLASS DIMENSION

ENVIRONMENT
AS FIRST-CLASS DIMENSION

* Environment as first-class design/
orogramming abstraction

- modularising functionalities and services
avallable to agents

ENVIRONMENT
AS FIRST-CLASS DIMENSION

* Environment as first-class design/
orogramming abstraction

- modularising functionalities and services
avallable to agents

e JaCaMo: A&A model (Agents & Artifacts)
- Inspired by Activity Theory & Distributed
Cognition
- environment as a dynamic set of artifacts
» created/used/shared by agents
» tools mediating agent activities
» ~0bjects at the agent LOA

ARTIFACT ABSTRACTION

ARTIFACT ABSTRACTION

e Artifact first-class abstraction
ENVIRONMENT (
c0: Counter
inc > count/1

o tick
J
h: HVAC
temp/1
AGENT startC__—> b: WhiteBoard
startW =~
off >
(

setText edjt/ 1
_pressed |

ARTIFACT ABSTRACTION

o Artifact first-class abstraction

ﬁ‘o“w“ — Coumer\ - usage interface
no - [cout » operations (~actions)

ik
{ wrvac | | - observable properties
temp/1
AGENT startC b: WhiteBoard |
startW =~
oflf > write
L ’ read
. g:GUI)

setText edjt/ 1
_pressed |

AGENT

ARTIFACT ABSTRACTION

o Artifact first-class abstraction

ENVIRONMENT

c0: Counter \
inc > count/1

temp/1

b: WhiteBoard
write
read

edit/1

I

' pressed

usage interface

» operations (~actions)
- observable properties
link interface

» 10 connect artifacts

ARTIFACT ABSTRACTION

o Artifact first-class abstraction

ﬁ‘o“w“ — Coumer\ - usage interface
no - [cout » operations (~actions)

s T - observable properties
AGENT :tt::\fv i = b: WhiteBoard - link Interface
= % » to connect artifacts
g GUI - manual

o > J » what functionalities & how to use
| i .
e JACaMo environment

AGENT

ARTIFACT ABSTRACTION

ENVIRONMENT
c0: Counter
t/1
inc > r_(i()_ljrl___1
tck
J
h: HVAC
temp/1
startC b: WhiteBoard
statW =~
off >
L
g: GUI
setText —~> L _e_djt_/i —
LMﬁ%Q_J

public class Counter extends Artifact {
private int nTicks;

void 1nit(){
defineObsProperty("count”",0);
nTicks = 0;

}

@OPERATION void inc(){

ObsProperty prop = getObsProperty("count");

prop.updateValue(prop.intValue() + 1);
nTicks++;
signal("tick " + nTicks);
}
}

e JACaMo environment
- Java-based API| & runtime

WORKSPACES

main wsp

> ST i . . .
" o Structuring complex/distributed
t>ﬁ ' meetingZ wsp environments In workspaces
= = i - logical containers of artifacts
> i . Co
B e B ; - agents can dynamically join and
' L p — i work in multiple workspaces
_____ S S el Co
R —— ' - workspaces can be distributed
) :
o over the network
aiel |

roomxX wsp

ORGANISATION
AS FIRST-CLASS DIMENSION

group CLOCK WHITEBOARD BAKERY
artifact artifact Workspace
! Wi Ty
2l o+ P agents can join
e} | =1 | dynamically the workspace
cake_staff * 3
group _
2 g 3 \ o planner, ARCHIVE
_* assistant - [l) role .
role /schedullng staff L artifact
U j@ group \. K
5 rnanager {9/ .
john */_planner P
° role 7/ P ’ *”f

' [COM. CHANNEL
artifact

RESOURCE [
artifact

TASK SCHEDULER
artifact

ORGANISATION
AS FIRST-CLASS DIMENSION

cake_staff
group

CLOCK

artifact

: artifact

A assistant -
role

«—-f\’) . Gty
i)

john

RESOURCE w4

manager

@ (-

WHITEBOARD
artifact

BAKERY
workspace

agents can join
dynamically the workspace

TASK SCHEDULER| [

artifact

" ARCHIVE
. L artifact

// [COM. CHANNEL
artifact

Organisation as first-class design/
programming abstraction

- specitying the structure and
coordinated behaviour of a MAS
as a whole

ORGANISATION
AS FIRST-CLASS DIMENSION

Organisation as first-class design/

group | cLOocK WHITEBOARD i UEEY ' '
\ artifact artifacj workspace progran”mlng abStraCUOn
© o] | - Specifying the structure and
W“a';?;f;"‘“ | coordinated behaviour of a MAS

K assistant] as a whole
""":} 4 m”’l“g » JaCaMo organisation
A ,w i K - roles, links, groups
| [Jeowemwet; - social goals, missions schemes

artifact

- NOIrms

TASK SCHEDULER| [
artifact

ORGANISATION
AS FIRST-CLASS DIMENSION

group g C-OCK WHITEBOARD BAKERY
A7 0) Larac artifact workspace
agents can join
=37"| dynamically the workspace
cake_staff
group

RESOURCE
artifact

K ¥
jOhn
¥ "Zp’\ ; " f ! ","’
§ - - S #5 Q ¢ 3 : f £ 5
.TE?\; gfﬁ o S i g -~
il ! ‘, :] :, A £
o ;] . \
7 ! \
7 i
b
e

9 aSS|stant ARC_HIVE

role
U N e
‘ manager

role

. | : \// A COM. CHANNEL
D) | A artifact
CA /° planner 4 SR
| role f} /)
TASK SCHEDULER | [_ annalfp | IV
artifact ' \ 7 oV

Organisation as first-class design/
programming abstraction

- specitying the structure and
coordinated behaviour of a MAS
as a whole

» JaCaMo organisation
- roles, links, groups
- soclal goals, missions schemes
- NOrmMs

e Tackling MAS-level complexity

- coordination, openness, regulated
autonomy

~ ! I A
Organisation
Organisation D | mens | on
' / t \
— & Group Scheme Concept
Role Norm Goal) 4 CompOSItlon
¢
L Y,

Simplified Conceptual View (Moise meta-model [HlUbner et al., 2009])

Excerpts from organisation program:

<normative-specification>

<functional-specification> . moqm " . - m
<norm 1d="nl1" +type="permission

<structural-specification> e &
P <scheme 1id="doAuction">

5 <goal id="auction™ role="auctioneer”
<role-definitions> Faat : : " . "
e . . <argument id="Id" /> mission="mAuctioneer"” />
SROCEriG= duEctoneer™ 7> <argument id="Service" /> : "aon " ; ; "
<role id="participant" /> g - <norm 1d="n2" type="obligation

<plan operator="sequence">

</role-definitions> <goal id="start" />

role="participant”

<group-specification id="auctionGroup"> <goal id="bid" ttf="10 seconds” /> mission="mParticipant” />
imlzsf B d <goal id="decide" ttf="1 hour" /> </normative-specification>
» n . n > n n n n </plan>
<role id="auctioneer” min="1" max="1"/> Thodl=
<;:g}:sid= ParEL AN MUT=gr =200 4> <mission id="mAuctioneer"” min="1" max="1"> |\JC)rrT1Eit]\/EB E5F)E§(:.

<goal 1id="start" />
<goal 1id="decide" />
</mission>

Structural spec. Functional spec.

norm nl : plays(A, auctionneer, G) ->
forbidden(A,nl1,plays(A,participant,G),
'forever').

</group-specification>
</structural-specification>

(@HcH program in NPL

Organisation
Organisation D | mens | on
/ ? \
- orou Sehome Concept
Role Norm Goal) 4 CompOSItIOH
\ ¢
L Y,

Simplified Conceptual View (Moise meta-model [HlUbner et al., 2009])

Excerpts from organisation program:

<normative-specification>
.. “ '=" n '." ll ‘"

g v ; <functional-specification>
<structural-specification> . ;

woecrntoce Explicit representation of the org

<role id="auctio
<role id="partici

veeennted - that agents can inspect, reason about, and change

<group-specificati

T ewnd® Relfled at runtime through artifacts

<role id="partic

Jram i - that @agents can monitor, manage, adapt

</structural-speci

</mLssion>

'forever').

Structural spec. Functional spec.

(@HcH program in NPL

WRAP-UP

Environment

WRAP-UP

Organisation

Organisation

2 RN

Environment [(@—

Goal

Agent

Group Scheme
Role Norm Goal
A N
o % R 9.9
S o . S
O K I . //ﬂ c/“ 6
S Q. 2 ® "D
Q- O .\@2('.‘ ()
I', ', “‘® “
v | N
Workspace Signal
? A
act
Artifact @ ——— Operation ooy Action
‘\ v perceive
......................... >
Property Belief

Agent

Environment

Environment (@—

Workspace

!

Artifact

WRAP-UP

Organisation

Organisation

2 RN

Group Scheme
Role Norm Goal

Operation

T~ .

Property

Action

Agent

Belief

Goal

Agent

POINTS FOR DISCUSSION

« AOP/MAQOP for WoX/Hypermedia (?)
- benetits

- Open Issues

e Roadmap?

- call for action”

