
LEVELS OF ABSTRACTIONS
IN DESIGNING & PROGRAMMING

SYSTEMS OF COGNITIVE AGENTS
A. Ricci

DISI, University of Bologna

OBJECTIVE

OBJECTIVE

• Some glances about Agent-Oriented Programming and Multi-
Agent Oriented Programming
- examples using JaCaMo framework/technology

OBJECTIVE

• Some glances about Agent-Oriented Programming and Multi-
Agent Oriented Programming
- examples using JaCaMo framework/technology

• Main viewpoint
- Level of abstraction, from design to runtime through

programming

OBJECTIVE

• Some glances about Agent-Oriented Programming and Multi-
Agent Oriented Programming
- examples using JaCaMo framework/technology

• Main viewpoint
- Level of abstraction, from design to runtime through

programming
• Some points for the discussion

- AOP and (M)AOP for the web/hypermedia?

AGENT-ORIENTED PROGRAMMING

• AI view
- modeling/designing/programming autonomous systems,

referred as agents
• SE view

- using agents as first-class modeling/designing/programming
abstraction

AGENT ABSTRACTION

AGENT ABSTRACTION

ENVIRONMENT

feedback

actions

percepts

effectors / actuators

sensors

acti
on to

 d
o

PERCEPTION

DECISION

ACTION

AGENT ABSTRACTION

• task/goal-oriented
• pro-active + reactive
• decision making

ENVIRONMENT

feedback

actions

percepts

effectors / actuators

sensors

acti
on to

 d
o

PERCEPTION

DECISION

ACTION

PARADIGMS & METAPHORS

imperative =>
functional =>

OOP =>
agents =>

machines
math

world of objects

PARADIGMS & METAPHORS

imperative =>
functional =>

OOP =>
agents =>

machines
math

world of objects
world of humans

ACTIONS & PERCEPTS
ENVIRONMENT

ACTIONS

OBSERVABLE STATE

PERCEPTS

AGENT

ACTIONS & PERCEPTS

• control uncoupling
- action execution model is

asynchronous
‣ success/failure events

- percepts as obs state events

ENVIRONMENT

ACTIONS

OBSERVABLE STATE

PERCEPTS

AGENT

ACTIONS & PERCEPTS

• control uncoupling
- action execution model is

asynchronous
‣ success/failure events

- percepts as obs state events
• vs. other models

- vs. method/proc calls
- vs. async msg (actor)

passing

ENVIRONMENT

ACTIONS

OBSERVABLE STATE

PERCEPTS

AGENT

AGENT COMMUNICATION
ENVIRONMENT

ACTIONS

OBSERVABLE STATE

PERCEPTS

AGENTS

SPEECH
ACTS

AGENT COMMUNICATION
• Agent Communication

Languages
- “speech acts”
- ~asynchronous message

passing + action
semantics

ENVIRONMENT

ACTIONS

OBSERVABLE STATE

PERCEPTS

AGENTS

SPEECH
ACTS

AGENT COMMUNICATION
• Agent Communication

Languages
- “speech acts”
- ~asynchronous message

passing + action
semantics

• vs. other model
- vs. async (actor) msg

passing

ENVIRONMENT

ACTIONS

OBSERVABLE STATE

PERCEPTS

AGENTS

SPEECH
ACTS

“COGNITIVE” MODEL

“COGNITIVE” MODEL

• AOP as a computing paradigm
- mentalistic and societal view of computation [Soham, 1993]
- level of abstraction to design and program

“COGNITIVE” MODEL

• AOP as a computing paradigm
- mentalistic and societal view of computation [Soham, 1993]
- level of abstraction to design and program

• BDI (Belief-Desire-Intention) model/architecture (80ies)
- inspired by the theory of human practical reasoning [Bratman, 1987]
- Procedural Reasoning System (PRS) [Georgeff et al, 1988]

“COGNITIVE” MODEL
• Beliefs

- information state
• Goals

- tasks to do
- achieve | maintenance

• Plans
- how to achieve the goals
- modules of agent behaviour

HVAC
ENVIRONMENT

startCooling

temp
BELIEF BASE

AGENT

startWarming

stop

15°

temp(15)

my_name(“ag0”)

…

idle

state

state(idle)

“COGNITIVE” MODEL
• Beliefs

- information state
• Goals

- tasks to do
- achieve | maintenance

• Plans
- how to achieve the goals
- modules of agent behaviour

• Beliefs
- information state

• Goals
- tasks to do
- achieve | maintenance

• Plans
- how to achieve the goals
- modules of agent behaviour

“COGNITIVE” MODEL
• Beliefs

- information state
• Goals

- tasks to do
- achieve | maintenance

• Plans
- how to achieve the goals
- modules of agent behaviour

// examples in Jason

!achieve_temp(20).

/* more declarative style */
!temp(20).

/* long-term task */
!achieve_and_keep_temp(20).

• Beliefs
- information state

• Goals
- tasks to do
- achieve | maintenance

• Plans
- how to achieve the goals
- modules of agent behaviour

• Beliefs
- information state

• Goals
- tasks to do
- achieve | maintenance

• Plans
- how to achieve the goals
- modules of agent behaviour

“COGNITIVE” MODEL
• Beliefs

- information state
• Goals

- tasks to do
- achieve | maintenance

• Plans
- how to achieve the goals
- modules of agent behaviour

• Beliefs
- information state

• Goals
- tasks to do
- achieve | maintenance

• Plans
- how to achieve the goals
- modules of agent behaviour

• Beliefs
- information state

• Goals
- tasks to do
- achieve | maintenance

• Plans
- how to achieve the goals
- modules of agent behaviour

• Beliefs
- information state

• Goals
- what tasks to do
- achieve | maintenance

• Plans
- how to achieve the goals
- modules of agent behaviour

PLAN LIBRARY

AGENT

@myplanX

• Plan model
- pro-active plans
- reactive plans

• Hierarchical model
- sub-goals

• Plan model
- pro-active plans
- reactive plans

• Hierarchical model
- sub-goals

<event> : <context>
 <- <body>.

PLAN MODEL | JASON EXAMPLE

• Plan model
- pro-active plans
- reactive plans

• Hierarchical model
- sub-goals

• Plan model
- pro-active plans
- reactive plans

• Hierarchical model
- sub-goals

<event> : <context>
 <- <body>.

PLAN MODEL | JASON EXAMPLE
+!achieve_temp(Target) :
 temp(Current) & Target > Current
 <- startWarming;
 !warm_until(Target).

+!achieve_temp(Target) :
 temp(Current) & Target < Current
 <- startCooling;
 !cool_until(Target).

+!achieve_temp(Target) :
 temp(Current) & Target == Current
 <- stopHVAC.

• Plan model
- pro-active plans
- reactive plans

• Hierarchical model
- sub-goals

• Plan model
- pro-active plans
- reactive plans

• Hierarchical model
- sub-goals

• Plan model
- pro-active plans
- reactive plans

• Hierarchical model
- sub-goals

<event> : <context>
 <- <body>.

PLAN MODEL | JASON EXAMPLE

• Plan model
- pro-active plans
- reactive plans

• Hierarchical model
- sub-goals

// long-term / maintenance task
// target(T): belief used to track
// the target temperature

+temp(Current) :
 target(Target) & Target != Current
 <- !achieve_temp(Target).

• Plan model
- pro-active plans
- reactive plans

• Hierarchical model
- sub-goals

• Plan model
- pro-active plans
- reactive plans

• Hierarchical model
- sub-goals

• Plan model
- pro-active plans
- reactive plans

• Hierarchical model
- sub-goals

<event> : <context>
 <- <body>.

PLAN MODEL | JASON EXAMPLE

• Plan model
- pro-active plans
- reactive plans

• Hierarchical model
- sub-goals

// long-term / maintenance task
// target(T): belief used to track
// the target temperature

+temp(Current) :
 target(Target) & Target != Current
 <- !achieve_temp(Target).

+!achieve_temp(Target) :
 temp(Current) & Target < Current
 <- startWarming;
 !warm_until(Target).

+!achieve_temp(Target) :
 temp(Current) & Target > Current
 <- startCooling;
 !cool_until(Target).

+!achieve_temp(Target) :
 temp(Current) & Target == Current
 <- stopHVAC.

• Plan model
- pro-active plans
- reactive plans

• Hierarchical model
- sub-goals

• Plan model
- pro-active plans
- reactive plans

• Hierarchical model
- sub-goals

“COGNITIVE” MODEL

• Intention
- a plan in execution
‣ can fail => plan failure handling
‣ can be inspected, suspended,

resumed, aborted
- multiple intentions can be in

execution concurrently

+!achieve_temp(Target) :
 temp(Current) & Target < Current
 <- startWarming;
 !warm_until(Target).

-!achieve_temp(Target) :
 <- print(“broken”);
 send_email.

+!warm_until(Target) :
 temp(Current) & Current > Target
 <- .drop_intention(warm_until);
 !achieve_temp(Target).

“COGNITIVE” MODEL

• Reflection/meta-level features
‣ adding/changing plans at runtime
‣ inspecting/changing motivation

state
‣ …

// adding a plan action
+!g1 <-
 …
 .add_plan(“+b : true <- .print(b).”);
 …

// checking for an intention
+!g1 : .intend(g2)
 <- …
 .suspend_intention(g2);
 …

CONTROL LOOP | REASONING CYCLE

CONTROL LOOP | REASONING CYCLE

see action

next state

ENVIRONMENT

AGENT

• Abstract/general

CONTROL LOOP | REASONING CYCLE

• (BDI) Reasoning cycle

see action

next state

ENVIRONMENT

AGENT

• Abstract/general

BDI architecture [Wooldridge, 2009]

begin1

while true do2

p perception()3

B brf (B,p) ; // belief revision4

D options(B, I) ; // desire revision5

I filter(B,D, I) ; // deliberation6

execute(I) ; // means-end7

end8

56

CONTROL LOOP | REASONING CYCLE

• (BDI) Reasoning cycle

see action

next state

ENVIRONMENT

AGENT

• Abstract/general
BDI architecture [Wooldridge, 2009]

while true do1
B brf (B,perception())2
D options(B, I)3
I filter(B,D, I)4
⇡ plan(B, I ,A)5
while ⇡ 6= ; and ¬succeeded(I ,B) and ¬impossible(I ,B) do6

execute(head(⇡))7
⇡ tail(⇡)8
B brf (B,perception())9
if reconsider(I ,B) then10

D options(B, I) ;11
I filter(B,D, I) ;12

if ¬sound(⇡, I ,B) then13
⇡ plan(B, I ,A) ;14

reconsider the intentions (not always!)

57

PLANS and PLAN LIBRARY
means-end in BDI =>
- get and exec a plan  

from a plan library

revise commitment to plan – re-
planning for context adaptation

reconsider the intentions

AGENTS vs. OBJECTS/ACTORS

AGENTS vs. OBJECTS/ACTORS
• vs. objects in OOP

- active vs. passive
- stronger encapsulation
‣ state + behaviour + control of the behaviour
‣ “decision making”

AGENTS vs. OBJECTS/ACTORS
• vs. objects in OOP

- active vs. passive
- stronger encapsulation
‣ state + behaviour + control of the behaviour
‣ “decision making”

• vs. actors
- not reactive but pro-activity
‣ reasoning cycle vs. event-loop
‣ task/goal-oriented vs. message-driven

FROM AOP TO MAOP
(“MULTI-AGENT ORIENTED PROGRAMMING”)

FROM AOP TO MAOP
(“MULTI-AGENT ORIENTED PROGRAMMING”)

• Integrating further design & programming dimensions and
abstractions aside to agent [Boissier et al, JaCaMo papers]
- environment dimension
- organisation dimension

FROM AOP TO MAOP
(“MULTI-AGENT ORIENTED PROGRAMMING”)

• Integrating further design & programming dimensions and
abstractions aside to agent [Boissier et al, JaCaMo papers]
- environment dimension
- organisation dimension

• Key points
- separation of concerns
- again: level of the abstraction
‣ i.e. away from the everything-is-an-agent perspective

ENVIRONMENT
AS FIRST-CLASS DIMENSION

ENVIRONMENT
AS FIRST-CLASS DIMENSION

• Environment as first-class design/
programming abstraction
- modularising functionalities and services

available to agents

ENVIRONMENT
AS FIRST-CLASS DIMENSION

• Environment as first-class design/
programming abstraction
- modularising functionalities and services

available to agents
• JaCaMo: A&A model (Agents & Artifacts)

- inspired by Activity Theory & Distributed
Cognition

- environment as a dynamic set of artifacts
‣ created/used/shared by agents
‣ tools mediating agent activities
‣ ~objects at the agent LoA

ENVIRONMENT

ACTIONS

OBSERVABLE STATE

PERCEPTS

AGENT

ARTIFACT ABSTRACTION

ENVIRONMENT

ACTIONS

OBSERVABLE STATE

PERCEPTS

AGENT

ARTIFACT ABSTRACTION
• Artifact first-class abstraction

ENVIRONMENT
c0: Counter

count/1inc
tick

b: WhiteBoard

write
read

h: HVAC
temp/1

startC
startW
off

g: GUI

edit/1setText
pressed

ENVIRONMENT

ACTIONS

OBSERVABLE STATE

PERCEPTS

AGENT

ARTIFACT ABSTRACTION
• Artifact first-class abstraction

- usage interface
‣ operations (~actions)
‣ observable properties

ENVIRONMENT
c0: Counter

count/1inc
tick

b: WhiteBoard

write
read

h: HVAC
temp/1

startC
startW
off

g: GUI

edit/1setText
pressed

ENVIRONMENT

ACTIONS

OBSERVABLE STATE

PERCEPTS

AGENT

ARTIFACT ABSTRACTION
• Artifact first-class abstraction

- usage interface
‣ operations (~actions)
‣ observable properties

- link interface
‣ to connect artifacts

ENVIRONMENT
c0: Counter

count/1inc
tick

b: WhiteBoard

write
read

h: HVAC
temp/1

startC
startW
off

g: GUI

edit/1setText
pressed

ENVIRONMENT

ACTIONS

OBSERVABLE STATE

PERCEPTS

AGENT

ARTIFACT ABSTRACTION
• Artifact first-class abstraction

- usage interface
‣ operations (~actions)
‣ observable properties

- link interface
‣ to connect artifacts

- manual
‣ what functionalities & how to use

• JACaMo environment

ENVIRONMENT
c0: Counter

count/1inc
tick

b: WhiteBoard

write
read

h: HVAC
temp/1

startC
startW
off

g: GUI

edit/1setText
pressed

ENVIRONMENT

ACTIONS

OBSERVABLE STATE

PERCEPTS

AGENT

ARTIFACT ABSTRACTION
• Artifact first-class abstraction

- usage interface
‣ operations (~actions)
‣ observable properties

- link interface
‣ to connect artifacts

- manual
‣ what functionalities & how to use

• JACaMo environment
- Java-based API & runtime

ENVIRONMENT
c0: Counter

count/1inc
tick

b: WhiteBoard

write
read

h: HVAC
temp/1

startC
startW
off

g: GUI

edit/1setText
pressed

public class Counter extends Artifact {

 private int nTicks;

 void init(){
 defineObsProperty("count",0);
 nTicks = 0;
 }

 @OPERATION void inc(){
 ObsProperty prop = getObsProperty("count");

prop.updateValue(prop.intValue() + 1);
nTicks++;
signal("tick " + nTicks);

 }
}

WORKSPACES

• Structuring complex/distributed
environments in workspaces
- logical containers of artifacts
- agents can dynamically join and

work in multiple workspaces
- workspaces can be distributed

over the network

main wsp

meetingZ wsp

roomX wsp

ORGANISATION
AS FIRST-CLASS DIMENSION

WHITEBOARD
artifact

ARCHIVE
artifact

COM. CHANNEL
artifact

TASK SCHEDULER
artifact

RESOURCE
artifact

CLOCK
artifact

BAKERY

workspace

agents can join
dynamically the workspace

bakery_staff
group

cake_staff
group

scheduling_staff
group

pastry_chef
role

assistant
role

helen john

mary

bob

henry

paul

anna

manager
role

planner
role

planner
role

planner
role

archivist
role

planner
role

ORGANISATION
AS FIRST-CLASS DIMENSION

• Organisation as first-class design/
programming abstraction
- specifying the structure and

coordinated behaviour of a MAS
as a whole

WHITEBOARD
artifact

ARCHIVE
artifact

COM. CHANNEL
artifact

TASK SCHEDULER
artifact

RESOURCE
artifact

CLOCK
artifact

BAKERY

workspace

agents can join
dynamically the workspace

bakery_staff
group

cake_staff
group

scheduling_staff
group

pastry_chef
role

assistant
role

helen john

mary

bob

henry

paul

anna

manager
role

planner
role

planner
role

planner
role

archivist
role

planner
role

ORGANISATION
AS FIRST-CLASS DIMENSION

• Organisation as first-class design/
programming abstraction
- specifying the structure and

coordinated behaviour of a MAS
as a whole

• JaCaMo organisation
- roles, links, groups
- social goals, missions schemes
- norms

WHITEBOARD
artifact

ARCHIVE
artifact

COM. CHANNEL
artifact

TASK SCHEDULER
artifact

RESOURCE
artifact

CLOCK
artifact

BAKERY

workspace

agents can join
dynamically the workspace

bakery_staff
group

cake_staff
group

scheduling_staff
group

pastry_chef
role

assistant
role

helen john

mary

bob

henry

paul

anna

manager
role

planner
role

planner
role

planner
role

archivist
role

planner
role

ORGANISATION
AS FIRST-CLASS DIMENSION

• Organisation as first-class design/
programming abstraction
- specifying the structure and

coordinated behaviour of a MAS
as a whole

• JaCaMo organisation
- roles, links, groups
- social goals, missions schemes
- norms

• Tackling MAS-level complexity
- coordination, openness, regulated

autonomy

WHITEBOARD
artifact

ARCHIVE
artifact

COM. CHANNEL
artifact

TASK SCHEDULER
artifact

RESOURCE
artifact

CLOCK
artifact

BAKERY

workspace

agents can join
dynamically the workspace

bakery_staff
group

cake_staff
group

scheduling_staff
group

pastry_chef
role

assistant
role

helen john

mary

bob

henry

paul

anna

manager
role

planner
role

planner
role

planner
role

archivist
role

planner
role

Qa<�NCc�jCRN 0CL3NcCRN Ģ #�cC, ,RN,3Ujc
D�+�KR L3j�ALR03I Rq3aqC3s

composition

Concept

Dimension

Organisation

Group Scheme

Role Goal

Organisation

Norm

**

bCLUIC~30 +RN,3Ujn�I pC3s VMϱϔЅζ L3j�ALR03I)?ɫ$N3a 3j �IY. lzzO*W

2u,3aUjc 8aRL Ra<�NCc�jCRN UaR<a�L-

bjan,jna�I cU3,Y 7nN,jCRN�I cU3,Y

MRaL�jCq3 cU3,Y

UaR<a�L CN MTH Se

Qa<�NCc�jCRN 0CL3NcCRN Ģ #�cC, ,RN,3Ujc
D�+�KR L3j�ALR03I Rq3aqC3s

composition

Concept

Dimension

Organisation

Group Scheme

Role Goal

Organisation

Norm

**

bCLUIC~30 +RN,3Ujn�I pC3s VMϱϔЅζ L3j�ALR03I)?ɫ$N3a 3j �IY. lzzO*W

2u,3aUjc 8aRL Ra<�NCc�jCRN UaR<a�L-

bjan,jna�I cU3,Y 7nN,jCRN�I cU3,Y

MRaL�jCq3 cU3,Y

UaR<a�L CN MTH Se

• Explicit representation of the org
- that agents can inspect, reason about, and change

• Reified at runtime through artifacts
- that agents can monitor, manage, adapt

WRAP-UP

WRAP-UP
Organisation

Agent

Goal

Group Scheme

Role Goal

Organisation

Norm

Environment

Workspace

Operation

Environment

Artifact

Property

Signal

Agent

Belief

Action

em
po
we
r

co
un
t-a
s

participate
regulate

coordinate

act

perceive

WRAP-UP
Organisation

Agent

Goal

Group Scheme

Role Goal

Organisation

Norm

Environment

Workspace

Operation

Environment

Artifact

Property

Signal

Agent

Belief

Action

em
po
we
r

co
un
t-a
s

participate
regulate

coordinate

act

perceive

Explicit Description / API

Ex
pl

ic
it

D
es

cr
ip

tio
n

/ A
PI

POINTS FOR DISCUSSION

• AOP/MAOP for WoX/Hypermedia (?)
- benefits
- open issues

• Roadmap?
- call for action?

