
Towards Enabling Internet-Scale Context-as-a-Service: A
Position Paper

Alexandru Sorici
University Politehnica of Bucharest

Bucharest, Romania
alexandru.sorici@cs.pub.ro

Andrei Olaru
University Politehnica of Bucharest

Bucharest, Romania
andrei.olaru@cs.pub.ro

Adina Magda Florea
University Politehnica of Bucharest

Bucharest, Romania
adina.florea@cs.pub.ro

ABSTRACT
Deploying context management systems at a global scale comes
with a number of challenges and requirements. We argue that the
hypermedia model and the agent-oriented paradigm help achieve
the vision of Context-as-a-Service. We categorize challenges accord-
ing to context processing concerns and use a scenario to exemplify
how the proposed architectural principles help overcome the chal-
lenges.

KEYWORDS
context management, context-awareness, context-as-a-service, hy-
permedia, software agents

ACM Reference Format:
Alexandru Sorici, Andrei Olaru, and Adina Magda Florea. 2019. Towards En-
abling Internet-Scale Context-as-a-Service: A Position Paper. In Companion
Proceedings of the 2019 World Wide Web Conference (WWW ’19 Companion),
May 13–17, 2019, San Francisco, CA, USA. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3308560.3316511

1 INTRODUCTION
The observation of an exponential increase of internet-connected
sensors and actuators has been a continuous remark for the past
decade in the Internet-of-Things (IoT) community, as well as at the
level of the everyday consumer of internet-enabled services. While
true in terms of the increase of devices, the global-scale exploitation
of the wealth of data brought forth by such devices still trends much
behind.

Research and industry communities alike have invested in three
main areas of focus: industry, society and environment. Of these,
the societal focus area is mostly consumer-oriented and, as such, is
the one by which the general public can perceive the advancement
of the field. While there has been steady progress, the vision held by
the ISTAG group back in 2001, in its proposed scenarios [5], where
IoT and Ambient Intelligence (AmI) meet, is still far from reach.

In the Maria scenario [5], for example, a single personal assistant,
running on a smartphone, handles interactions with transportation,
security, communication and smart home systems. The complexity
of these interactions comes from the need to continuously and
seamlessly switch between different contexts.

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’19 Companion, May 13–17, 2019, San Francisco, CA, USA
© 2019 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-6675-5/19/05.
https://doi.org/10.1145/3308560.3316511

Context “is any information that can be used to characterize the
situation of an entity. An entity is a person, place, or object that
is considered relevant to the interaction between a user and an
application, including the user and applications themselves” [1].
Another definition [2] states that context is the dressing of a focus,
separating the focus of the user or the application from the “dress-
ing” – data which is not vital, but which can improve reasoning on
the focus. While these definitions look general, they also offer an
explanation for the complexity of deploying the Maria scenario.

Context-aware applications require reasoning procedures, con-
text information representation and support for dynamic and het-
erogeneous context providers and consumers, all of which can vary
greatly across domains. For instance, in a smart crop monitoring
application, context refers to the data retrieved from static sensors
installed in the field, for example monitoring soil and weather con-
ditions, as well as meta-data about the sensors themselves (battery
power, physical location, distance from other sensors). On the other
hand, in a smart city application, user focus may change rapidly
from the current activity at home or at the workplace, to that of
monitoring personal health parameters while executing a physical
workout activity. The consumer of context is mobile and changes
focus quickly, while the means to derive the required high-level
context information may involve data-driven algorithms (machine-
learned data), along-side knowledge-driven heuristics.

Apart from the variety of context-aware application domains
themselves, the problem of interest for specific context information
within a domain, or combining information from several domains
gave rise to the Sensing-as-a-Service model for IoT [13].

The model tackles the issue of siloed systems, proposing the
existence of several stakeholders: the sensor owner (e.g. an individual
person, a state or a private organization), the sensor publishers
(organizations implementing means for sensor data collection), the
extended service providers (organizations that bring added value by
analyzing and aggregating sensor data) and the final consumer.

The sensing-as-a-service vision carries with it implicit non-
functional requirements for openness and scalability, since the
model allows for and encourages organizations to play several
of the mentioned roles at once, thus leading to the development of
context prosumers (producer and consumer at the same time). Con-
sequently, context management plays a central role in this vision,
precisely because it implies that consumers, with different interests,
require data from different providers (with their own interests),
processed in custom ways.

From a context management perspective, implementing the
sensing-as-a-service model, as well as the ISTAG vision for AmI,
brings about a number of challenges, which we group along the
following concerns.

https://doi.org/10.1145/3308560.3316511
https://doi.org/10.1145/3308560.3316511


Representation and Reasoning. At global scale, a single con-
text model or reasoning/inference technology cannot be expected
for all application domains.Mechanisms that facilitate conversion
from one model to another, as well as on-demand execution of
various context processing procedures have to be considered.

Context Provisioning. This perspective focuses on how con-
text information is supplied to services that can add value to raw
data through inference. The challenge in AmI and sensing-as-a-
service lies in the fact that the input base can no longer be consid-
ered static. Rather, a long-lived means to interconnect, search for and
select the most appropriate/available context sources and context
processors required for a consumer request is needed.

Query and Dissemination. The large-scale nature of sensing-
as-a-service and pervasive AmI means that there must be a means
to handle queries/subscriptions with a large selection base. Han-
dling of frequently overlapping queries, as well as result caching
should be enabled where appropriate. Another challenge comes
from the principle that context information should be consumed
as close as possible to its production source, thereby increasing the
chance of relevance. An organizational scheme is needed that facil-
itates local consumption of context information, while at the same
time enabling a structured dissemination of context information for
remote consumers.

Context Service Deployment. The challenge from the deploy-
ment perspective is to find the means to facilitate scalability, search
and discoverability of context management services. An organi-
zational scheme that facilitates a single entry-point for all context
life cycle entities (producers, processors, consumers) is required.
The deployment structure must address mobility of context con-
sumers and, more importantly, the shift in their focus, which brings
a change in the necessary context information.

While these challenges have been addressed individually in ex-
isting work, we argue that visions such as sensing-as-a-service
and ISTAG-level AmI are still not realized because of two main
short-comings: (i) the lack of support architecture and information
structuring mechanisms in existing context middleware that would
allow for organization of context such that it becomes discover-
able / searchable at a large scale, by highly mobile consumers; (ii)
insufficient support in existing context middleware to negotiate
between different (possibly conflicting) stakeholder (e.g. context
producer, processor, consumer) interests, when considering the
sensing-as-a-service model.

To answer to these challenges, we argue that context manage-
ment middleware must adopt an architectural style that promotes
long-lived deployment, openness and evolvability. Specifically, we
posit that the fundamental engineering techniques that sustain the
Web (e.g. hypermedia-driven interactions, RESTful [6] protocols,
knowledge graphs, publish/subscribe mechanisms) can be coupled
with the organizational and behavioral principles stemming from
the Multi-Agent System (MAS) literature to obtain architectural
specifications for Context-as-a-Service (CaaS) systems supporting
application areas as large-scale as AmI and Sensing-as-a-Service.
While a hypermedia environment facilitates large scale discover-
ability/searchability, the agent-oriented paradigm allows conceptu-
alization of the sensing-as-a-service stakeholders as autonomous
entities upholding policy driven goals.

2 RELATEDWORK
Recent survey papers [10, 12] perform a good review of several of
the existing context management middleware. While each solution
covers many aspects that are essential for the implementation of
a context management life cycle, most of the existing proposals
either focus on specializing for a particular application domain
(e.g. SeCoMan [3] – location, CoCaMAAL [7] – eHealth), or on
the engineering effort for one or more of the focus requirements
outlined in the introduction. The CoaaS platform introduced in
[8], for example, introduces a detailed view of architectural ele-
ments responding to challenges of on-demand reasoning and large
scale query management (including caching and request predic-
tion). However, the systems proposes a centralized, cloud-based
deployment and does not address the issue of organizing context
information and searchability/discoverability thereof, beyond a
directory-based mechanism.

CONSERT [14] is a context middleware that uses the multi-agent
programming paradigm to design autonomous management for
each of the context life cycle entities. It further proposes a deploy-
ment mechanism that follows an explicit organizational scheme,
which uses Context Dimensions (well-defined focus points of a con-
sumer that dominate the rest of the perceived context information
- e.g. location, activity, role in an organization) to connect the dif-
ferent instances of context agents. While conceptually it answers
to the challenges enumerated under the query/dissemination and
service deployment categories, it does not meet the requirements
for context provisioning and multi-modal, on-demand reasoning
capabilities. Furthermore, the middleware has not undergone any
real-world scenario validation.

FIWARE1 is an open-source cloud platform aiming to provide re-
liable means for developing open, collaborative and mature ecosys-
tems of smart, context-aware, internet-scale applications. It comes
close to the set of requirements outlined in the introduction.

The context management reference architecture of FIWARE2
is based on the interaction between key Generic Enablers (GE)
that facilitate the development of a context processing pipeline.
The central element is the Context Broker GE, which defines the
context model and allows for context information storage, update
and look-up. The Context Broker can be connected to a series of
other GEs which complement its functionality (e.g. a IoT Broker as
a wrapper over IoT devices, IoT Discovery to facilitate discovery of
device capabilities, Complex Event Processing and Big Data Analy-
sis GEs for short- and long-term reasoning). A core feature of the
FIWARE platform is its reliance on web-based standards for en-
abling the communication between GEs. The Open Mobile Alliance
(OMA) NGSI-9 and NGSI-10 [9] are two specifications for RESTful
interaction protocols that define means to semantically describe
the capabilities of IoT devices (NGSI-9) and the exchange of con-
text content itself (e.g. publishing, updating, querying – through
NGSI-10).

However, while the structural elements are there, the FIWARE
platform proposes no conceptual means of organizing the connec-
tion of its GEs, so as to enable large-scale, automated discoverability

1FIWARE (https://www.fiware.org/, https://www.fiware.org/developers/catalogue/)
2FIWARE Context Management Architecture (https://goo.gl/Yvwv5A)

https://www.fiware.org/
https://www.fiware.org/developers/catalogue/
https://goo.gl/Yvwv5A


Figure 1: An example of context management services enabling a scenario in which temperature data is used both for crop management and
for a user’s context-aware activity tracking. Context life cycle entity roles are written in parentheses for each actor. Dotted boundaries denote
logical partition of context life cycle entity deployment into Context Domains (e.g. parcel, workout), based on spatial and activity Context
Dimensions.

and dissemination of information. The Context Broker interconnec-
tion has to be manually specified and is predefined at development
time. Furthermore, the existing Context Broker implementation does
not handle complex (composite) query execution, nor can the Com-
plext Event Processing GE manage on-demand context reasoning.

Nonetheless, the takeaway point of FIWARE is that the defined
RESTful interfaces contain in their specification the potential to
enable all the outlined types of interaction, as required. Either
upgrading the existing GEs, or delivering fresh implementations
compatible with the NGSI-9 and NGSI-10 specifications has the
potential to overcome the challenges.

3 HYPERMEDIA-DRIVEN CAAS
While the exact mechanisms and methods for context manage-
ment are highly application-dependent, the multitude of entities
and stakeholders in a global-scale system for the management of
context information requires a suitable underlying architecture,
which can answer to the outlined challenges and also fulfill the
non-functional requirements of openness and scalability. The pur-
pose of this architectural specification is to lead to the development
of systems that support a large-scale Context-as-a-Service (CaaS)
view, where context management can be offloaded to a network of
context life cycle entities, each working under its own policy on con-
text production, reasoning, or query management/dissemination.

Such an underlying architecture is the resource-oriented model of
the Web and the hypermedia-driven interactions it supports. More-
over, the agent-oriented paradigm can contribute to modeling indi-
vidual entities in the CaaS ecosystem, by focusing on a perspective
centered on individual participants, rather than on the system as a
whole.

Hypermedia underpins the World Wide Web as a network of
uniquely identifiable (by means of URIs) resources interconnec-
ted through web services. However, to truly exploit the resource-
oriented nature for themodeling of context processing entities, their
state (e.g. context production capabilities, query subscription results,
active reasoning mechanisms) has to be explicitly (semantically)
described and the means to change their state should be clearly
identifiable.

In terms of the context service deployment challenges, the
use of a hypermedia environment and RESTful [6] interactions is
not sufficient on its own to facilitate discoverability and efficient
search / query propagation. In the architectural specification we

envision, context life cycle entities must have a structured means by
which to determine their required connections. We draw inspiration
from the vision of Socio-Technical Networks (STNs) [4] and the
proposed deployment organization scheme of CONSERT [14]. All
URIs referring to connections between entities of an STN are typed
relations, meaning that there is a clear semantics attached to them
(e.g. ownership, membership, collocation). In CONSERT, Context
Dimensions and Context Domains are concepts defining key proper-
ties and values that relate a context consumer to context sources
that might be of interest to his current focus. For instance, the focus
of the user may be included in various spatial Context Domains,
also a hierarchy of activity-related Domains, and also in some social
Domains. This hierarchical organization of context entities in the
same Dimension facilitates their management and indicates clearly
the context sub-model of which they are responsible.

Let us take the example in Figure 1. A person is taking a jog
(workout) in the vicinity of a farm. Two dimensions of context
are distinguishable: a spatial one and an activity-based one. From
the spatial perspective, the ⟨smart space context manager⟩ keeps
track of a hierarchy of two domains – a particular parcel, which
is ⟨part-of⟩ an agricultural field. In the context model, an activity
has a place where it is carried out, a relation which is modelled
semantically and explicitly by the ⟨personal agent⟩ (which acts as
a context consumer) on behalf of the jogger. By this relation, the
⟨personal agent⟩ uses a discovery mechanism through which it
looks explicitly for a context processor responsible for the space in
which the jogging activity takes place. The ⟨personal agent⟩ then
launches a query for the current surface temperature. The result of
this query is forwarded to the ⟨workout activity manager⟩, where
this context processor uses it, together with data from the smart
watch, to warn the user of excess dehydration, depending on the
outside weather conditions and the calories he has burned.

The example illustrates both the model of sensing-as-a-service,
since various information is gathered from various sources in the
current context; and the model of structured search for context
information, since entities are communicating with other entities
in the same Context Domain.

The critical observation regarding the deployment perspective in
the given example is that the ⟨personal agent⟩ is or becomes aware
of two Context Domains (the jogging activity and the agricultural
field location) and is able to connect to the relevant context processors
to retrieve context that "dresses" the current focus of the user (his



well-being while jogging). This is made possible by the explicit,
typed spatial inclusion and current activity relations which relate
the ⟨personal agent⟩ with the ⟨workout activity manager⟩ / ⟨smart
space manager⟩.

From a query / dissemination perspective, a Context Dimen-
sion-based organization of context processors facilitates query rout-
ing. In our example, a manner of handling queries similar to the one
described by Mayer et al. [11] is proposed. Both the agricultural ma-
chinery and the personal agent subscribe for temperature updates
to the ⟨temperature analysis⟩ processor. Being mobile consumers,
they will request temperature updates for given locations (parcels)
within the field. If temperature analysis is managed by different
processors, queries sent to the processor for the entire field must
be routed to the one corresponding to current consumer location.
The Context Dimension / Context Domain based organization of the
processors enables the same type of query routing mechanism as
described in [11] (including Context Domain-based range queries).

An agent-oriented view of the context life cycle elements in our
example is of relevance from the context provisioning perspec-
tive. Software agents are entities that are able to act autonomously
in their environment in order to achieve or maintain their goals.

The owner of the agricultural field is the one that deployed the
temperature sensors and the ⟨temperature analysis⟩ processor(s).
The ⟨personal agent⟩ may be able to discover the existence of the
processor but this may not guarantee that he has the right to access
their information. This use case can be viewed as a sensing-as-a-
service instance, where the ⟨temperature analysis⟩ is an extended
service provider and the ⟨personal agent⟩ a final consumer. If we
model/design the life cycle entities as agents, then access to the
temperature data can be subject to an automated, agent based ne-
gotiation. The ⟨temperature analysis⟩ processor can make use of
goal-based policies, that require it to, for example, accept query re-
quests only for a specific user activity context, such as the workout
one.

The representation and reasoning perspective benefits in
two ways from the proposed principles. Context models are appli-
cation dependent, but the desire for searchability requires the use
of a common-ground language. Standardization efforts of the W3C
such as the SSN ontology3 or the Web-of-Things Thing Descrip-
tion4 can be employed in this case. The agent-oriented view, on
the other hand, is suitable for multi-modal and on-demand reason-
ing. In our example, default reasoning carried out by the ⟨workout
activity⟩ processor is complemented (upon discovery of temper-
ature data) by a request from the ⟨personal agent⟩. The ⟨workout
activity⟩ is asked to execute a knowledge-driven heuristic that
combines temperature and smart watch context to gauge the user’s
well-being.

4 CONCLUSIONS
We argue that context servicing at the scale of pervasive AmI set-
tings and sensing-as-a-service applications is lacking because of
a missing evolvable and searchable middleware ecosystem, where
organized context information enables its effective exploration. We
further assess that an agent-based view of the context life cycle

3https://www.w3.org/TR/vocab-ssn/
4https://w3c.github.io/wot-thing-description/

entities can appropriately model the required level of autonomy
and goal-driven behavior of stakeholders in a sensing-as-a-service
setting.

We envision a large-scale CaaS deployment as a conglomerate of
computing entities obtaining producing, processing, and consum-
ing context. The multitude and diversity of entities inevitably leads
to a highly heterogeneous system, that needs to be loosely coupled.
Not only does the hypermedia model naturally support openness
and scalability, but it also answers well to the challenges of CaaS de-
ployment. We also argue that context management systems would
benefit from an agent-oriented approach to the implementation
of their individual components. What we can take from the MAS
domain and use in CaaS is not necessarily how entities can be im-
plemented as agents, but the agent-oriented perspective. Moving
from a system-wide view to an entity-centered helps designing
components that are able to work in highly heterogeneous systems.

ACKNOWLEDGMENTS
This research was funded by grant PN-III-P1-1.2-PCCDI-2017-0734.

REFERENCES
[1] Gregory D Abowd, Anind K Dey, Peter J Brown, Nigel Davies, Mark Smith, and

Pete Steggles. 1999. Towards a better understanding of context and context-
awareness. In International symposium on handheld and ubiquitous computing.
Springer, 304–307.

[2] Juliette Brézillon and Patrick Brézillon. 2007. Context Modeling: Context as a
Dressing of a Focus. In Modeling and Using Context, Boicho Kokinov, Daniel C.
Richardson, Thomas R. Roth-Berghofer, and Laure Vieu (Eds.). Lecture Notes in
Computer Science, Vol. 4635. Springer Berlin Heidelberg, 136–149.

[3] Alberto Huertas Celdrán, Félix J García Clemente, Manuel Gil Pérez, and Grego-
rio Martínez Pérez. 2016. SeCoMan: A Semantic-Aware Policy Framework for
Developing Privacy-Preserving and Context-Aware Smart Applications. IEEE
Systems Journal 10, 3 (2016), 1111–1124.

[4] Andrei Ciortea, Antoine Zimmermann, Olivier Boissier, and Adina Magda Florea.
2016. Hypermedia-driven Socio-technical Networks for Goal-driven Discovery
in the Web of Things. In Proceedings of the Seventh International Workshop on the
Web of Things. ACM, 25–30.

[5] K. Ducatel, M. Bogdanowicz, F. Scapolo, J. Leijten, and J.C. Burgelman. 2001.
Scenarios for ambient intelligence in 2010. Technical Report. Office for Official
Publications of the European Communities.

[6] Roy T Fielding and Richard N Taylor. 2000. Architectural styles and the design
of network-based software architectures. Vol. 7. University of California, Irvine
Irvine, USA.

[7] Abdur Forkan, Ibrahim Khalil, and Zahir Tari. 2014. CoCaMAAL: A cloud-
oriented context-aware middleware in ambient assisted living. Future Generation
Computer Systems 35 (2014), 114–127.

[8] Alireza Hassani, Alexey Medvedev, Pari Delir Haghighi, Sea Ling, Maria
Indrawan-Santiago, Arkady Zaslavsky, and Prem Prakash Jayaraman. 2018.
Context-as-a-Service Platform: Exchange and Share Context in an IoT Ecosystem.
In 2018 IEEE International Conference on Pervasive Computing and Communica-
tions Workshops (PerCom Workshops). IEEE, 385–390.

[9] Srdjan Krco, Boris Pokric, and Francois Carrez. 2014. Designing IoT architec-
ture(s): A European perspective. In Internet of Things (WF-IoT), 2014 IEEE World
Forum on. IEEE, 79–84.

[10] Xin Li, Martina Eckert, José-Fernán Martinez, and Gregorio Rubio. 2015. Context
aware middleware architectures: survey and challenges. Sensors 15, 8 (2015),
20570–20607.

[11] SimonMayer, Dominique Guinard, and Vlad Trifa. 2012. Searching in a web-based
infrastructure for smart things. In Internet of Things (IOT), 2012 3rd International
Conference on the. IEEE, 119–126.

[12] Charith Perera, Arkady Zaslavsky, Peter Christen, and Dimitrios Georgakopoulos.
2014. Context aware computing for the internet of things: A survey. IEEE
communications surveys & tutorials 16, 1 (2014), 414–454.

[13] Charith Perera, Arkady Zaslavsky, Peter Christen, and Dimitrios Georgakopoulos.
2014. Sensing as a service model for smart cities supported by internet of things.
Transactions on Emerging Telecommunications Technologies 25, 1 (2014), 81–93.

[14] Alexandru Sorici, Gauthier Picard, Olivier Boissier, and Adina Florea. 2015. Multi-
agent based flexible deployment of context management in ambient intelligence
applications. In International Conference on Practical Applications of Agents and
Multi-Agent Systems. Springer, 225–239.


	Abstract
	1 Introduction
	2 Related Work
	3 Hypermedia-driven CaaS
	4 Conclusions
	Acknowledgments
	References

